This documentation is automatically generated by online-judge-tools/verification-helper
This project is maintained by tsutaj
// Tonelli-Shanks Algorithm
// 素数 p を法とし、n が与えられたとき、
// r^2 = n (mod p) を満たす r を求める
struct QuadraticResidue {
using lint = long long int;
QuadraticResidue() {}
// x^k (mod p)
lint mod_pow(lint x, lint k, lint p) {
lint res = 1;
for(; k>0; k>>=1) {
if(k & 1) (res *= x) %= p;
(x *= x) %= p;
}
return res;
}
lint mod_inv(lint x, lint p) {
return mod_pow(x, p-2, p);
}
// ルジャンドル記号 (a/p) = a^{\frac{p-1}{2}} (p が奇素数の場合)
// (a/p) = 0 ... a = 0 (mod p)
// (a/p) = 1 ... a が p を法として平方剰余
// (a/p) = -1 ... a が p を法として平方剰余でない
// 平方根の解の存在がこれで確認できる
lint Legendre(lint a, lint p) {
if(a % p == 0) return 0;
lint res = mod_pow(a, (p-1)/2, p);
if(res == p-1) return -1;
return res;
}
// r^2 = n (mod p) なる r を求める (mod p 上での n の平方根)
vector<lint> TonelliShanks(lint n, lint p) {
if(Legendre(n, p) == -1) return {};
if(p == 2) {
if(n == 0) return {0};
if(n == 1) return {1};
}
lint Q = p - 1, S = 0;
while(Q % 2 == 0) Q /= 2, S++;
lint z = 2;
while(z < p and Legendre(z, p) != -1) z++;
if(z == p) return {};
lint M = S;
lint c = mod_pow(z, Q, p);
lint t = mod_pow(n, Q, p);
lint R = mod_pow(n, (Q+1)/2, p);
lint r = -1;
while(1) {
if(t == 0) { r = 0; break; }
if(t == 1) { r = R; break; }
lint i = 1, tt = t * t % p;
for(i=1; i<M; i++) {
if(tt == 1) break;
tt = tt * tt % p;
}
if(i == M) return {};
lint b = c;
for(lint j=0; j<M-i-1; j++) {
b = b * b % p;
}
M = i;
c = b * b % p;
t = t * c % p;
R = R * b % p;
}
vector<lint> ans;
ans.push_back(r);
if(r != p - r) ans.push_back(p - r);
return ans;
}
};
#line 1 "math/math_016_mod_sqrt.cpp"
// Tonelli-Shanks Algorithm
// 素数 p を法とし、n が与えられたとき、
// r^2 = n (mod p) を満たす r を求める
struct QuadraticResidue {
using lint = long long int;
QuadraticResidue() {}
// x^k (mod p)
lint mod_pow(lint x, lint k, lint p) {
lint res = 1;
for(; k>0; k>>=1) {
if(k & 1) (res *= x) %= p;
(x *= x) %= p;
}
return res;
}
lint mod_inv(lint x, lint p) {
return mod_pow(x, p-2, p);
}
// ルジャンドル記号 (a/p) = a^{\frac{p-1}{2}} (p が奇素数の場合)
// (a/p) = 0 ... a = 0 (mod p)
// (a/p) = 1 ... a が p を法として平方剰余
// (a/p) = -1 ... a が p を法として平方剰余でない
// 平方根の解の存在がこれで確認できる
lint Legendre(lint a, lint p) {
if(a % p == 0) return 0;
lint res = mod_pow(a, (p-1)/2, p);
if(res == p-1) return -1;
return res;
}
// r^2 = n (mod p) なる r を求める (mod p 上での n の平方根)
vector<lint> TonelliShanks(lint n, lint p) {
if(Legendre(n, p) == -1) return {};
if(p == 2) {
if(n == 0) return {0};
if(n == 1) return {1};
}
lint Q = p - 1, S = 0;
while(Q % 2 == 0) Q /= 2, S++;
lint z = 2;
while(z < p and Legendre(z, p) != -1) z++;
if(z == p) return {};
lint M = S;
lint c = mod_pow(z, Q, p);
lint t = mod_pow(n, Q, p);
lint R = mod_pow(n, (Q+1)/2, p);
lint r = -1;
while(1) {
if(t == 0) { r = 0; break; }
if(t == 1) { r = R; break; }
lint i = 1, tt = t * t % p;
for(i=1; i<M; i++) {
if(tt == 1) break;
tt = tt * tt % p;
}
if(i == M) return {};
lint b = c;
for(lint j=0; j<M-i-1; j++) {
b = b * b % p;
}
M = i;
c = b * b % p;
t = t * c % p;
R = R * b % p;
}
vector<lint> ans;
ans.push_back(r);
if(r != p - r) ans.push_back(p - r);
return ans;
}
};