This documentation is automatically generated by online-judge-tools/verification-helper
This project is maintained by tsutaj
// @category セグメント木 (Segment Tree)
// @title 遅延伝播セグメント木 (Lazy Segment Tree)
template <typename MonoidType, typename OperatorType>
struct LazySegmentTree {
using MMtoM = function< MonoidType(MonoidType, MonoidType) >;
using OOtoO = function< OperatorType(OperatorType, OperatorType) >;
using MOtoM = function< MonoidType(MonoidType, OperatorType) >;
using OItoO = function< OperatorType(OperatorType, int) >;
// node, lazy, update flag (for lazy), identity element
int n;
vector<MonoidType> node;
vector<OperatorType> lazy;
vector<bool> need_update;
MonoidType E0;
OperatorType E1;
// update / combine / lazy / accumulate function
MOtoM upd_f;
MMtoM cmb_f;
OOtoO lzy_f;
OItoO acc_f;
void build(int m, vector<MonoidType> v = vector<MonoidType>()) {
if(v != vector<MonoidType>()) m = v.size();
n = 1; while(n < m) n *= 2;
node = vector<MonoidType>(2*n-1, E0);
lazy = vector<OperatorType>(2*n-1, E1);
need_update = vector<bool>(2*n-1, false);
if(v != vector<MonoidType>()) {
for(int i=0; i<m; i++) {
node[n-1+i] = v[i];
}
for(int i=n-2; i>=0; i--) {
node[i] = cmb_f(node[2*i+1], node[2*i+2]);
}
}
}
// initialize
LazySegmentTree() {}
LazySegmentTree(int n_, MonoidType E0_, OperatorType E1_,
MOtoM upd_f_, MMtoM cmb_f_, OOtoO lzy_f_, OItoO acc_f_,
vector<MonoidType> v = vector<MonoidType>()) :
E0(E0_), E1(E1_),
upd_f(upd_f_), cmb_f(cmb_f_), lzy_f(lzy_f_), acc_f(acc_f_) {
build(n_, v);
}
void eval(int k, int l, int r) {
if(!need_update[k]) return;
node[k] = upd_f(node[k], acc_f(lazy[k], r - l));
if(r - l > 1) {
lazy[2*k+1] = lzy_f(lazy[2*k+1], lazy[k]);
lazy[2*k+2] = lzy_f(lazy[2*k+2], lazy[k]);
need_update[2*k+1] = need_update[2*k+2] = true;
}
lazy[k] = E1;
need_update[k] = false;
}
void update(int a, int b, OperatorType x, int l, int r, int k) {
eval(k, l, r);
if(b <= l or r <= a) return;
if(a <= l and r <= b) {
lazy[k] = lzy_f(lazy[k], x);
need_update[k] = true;
eval(k, l, r);
}
else {
int mid = (l + r) / 2;
update(a, b, x, l, mid, 2*k+1);
update(a, b, x, mid, r, 2*k+2);
node[k] = cmb_f(node[2*k+1], node[2*k+2]);
}
}
MonoidType query(int a, int b, int l, int r, int k) {
if(b <= l or r <= a) return E0;
eval(k, l, r);
if(a <= l and r <= b) return node[k];
int mid = (l + r) / 2;
MonoidType vl = query(a, b, l, mid, 2*k+1);
MonoidType vr = query(a, b, mid, r, 2*k+2);
return cmb_f(vl, vr);
}
// update [a, b)-th element (applied value, x)
void update(int a, int b, OperatorType x) {
update(a, b, x, 0, n, 0);
}
// range query for [a, b)
MonoidType query(int a, int b) {
return query(a, b, 0, n, 0);
}
void dump() {
fprintf(stderr, "[lazy]\n");
for(int i=0; i<2*n-1; i++) {
if(i == n-1) fprintf(stderr, "xxx ");
if(lazy[i] == E1) fprintf(stderr, " E ");
else fprintf(stderr, "%3d ", lazy[i]);
}
fprintf(stderr, "\n");
fprintf(stderr, "[node]\n");
for(int i=0; i<2*n-1; i++) {
if(i == n-1) fprintf(stderr, "xxx ");
if(node[i] == E0) fprintf(stderr, " E ");
else fprintf(stderr, "%3d ", node[i]);
}
fprintf(stderr, "\n");
}
};
#line 1 "structure/strc_009_abst_lazy_segtree.cpp"
// @category セグメント木 (Segment Tree)
// @title 遅延伝播セグメント木 (Lazy Segment Tree)
template <typename MonoidType, typename OperatorType>
struct LazySegmentTree {
using MMtoM = function< MonoidType(MonoidType, MonoidType) >;
using OOtoO = function< OperatorType(OperatorType, OperatorType) >;
using MOtoM = function< MonoidType(MonoidType, OperatorType) >;
using OItoO = function< OperatorType(OperatorType, int) >;
// node, lazy, update flag (for lazy), identity element
int n;
vector<MonoidType> node;
vector<OperatorType> lazy;
vector<bool> need_update;
MonoidType E0;
OperatorType E1;
// update / combine / lazy / accumulate function
MOtoM upd_f;
MMtoM cmb_f;
OOtoO lzy_f;
OItoO acc_f;
void build(int m, vector<MonoidType> v = vector<MonoidType>()) {
if(v != vector<MonoidType>()) m = v.size();
n = 1; while(n < m) n *= 2;
node = vector<MonoidType>(2*n-1, E0);
lazy = vector<OperatorType>(2*n-1, E1);
need_update = vector<bool>(2*n-1, false);
if(v != vector<MonoidType>()) {
for(int i=0; i<m; i++) {
node[n-1+i] = v[i];
}
for(int i=n-2; i>=0; i--) {
node[i] = cmb_f(node[2*i+1], node[2*i+2]);
}
}
}
// initialize
LazySegmentTree() {}
LazySegmentTree(int n_, MonoidType E0_, OperatorType E1_,
MOtoM upd_f_, MMtoM cmb_f_, OOtoO lzy_f_, OItoO acc_f_,
vector<MonoidType> v = vector<MonoidType>()) :
E0(E0_), E1(E1_),
upd_f(upd_f_), cmb_f(cmb_f_), lzy_f(lzy_f_), acc_f(acc_f_) {
build(n_, v);
}
void eval(int k, int l, int r) {
if(!need_update[k]) return;
node[k] = upd_f(node[k], acc_f(lazy[k], r - l));
if(r - l > 1) {
lazy[2*k+1] = lzy_f(lazy[2*k+1], lazy[k]);
lazy[2*k+2] = lzy_f(lazy[2*k+2], lazy[k]);
need_update[2*k+1] = need_update[2*k+2] = true;
}
lazy[k] = E1;
need_update[k] = false;
}
void update(int a, int b, OperatorType x, int l, int r, int k) {
eval(k, l, r);
if(b <= l or r <= a) return;
if(a <= l and r <= b) {
lazy[k] = lzy_f(lazy[k], x);
need_update[k] = true;
eval(k, l, r);
}
else {
int mid = (l + r) / 2;
update(a, b, x, l, mid, 2*k+1);
update(a, b, x, mid, r, 2*k+2);
node[k] = cmb_f(node[2*k+1], node[2*k+2]);
}
}
MonoidType query(int a, int b, int l, int r, int k) {
if(b <= l or r <= a) return E0;
eval(k, l, r);
if(a <= l and r <= b) return node[k];
int mid = (l + r) / 2;
MonoidType vl = query(a, b, l, mid, 2*k+1);
MonoidType vr = query(a, b, mid, r, 2*k+2);
return cmb_f(vl, vr);
}
// update [a, b)-th element (applied value, x)
void update(int a, int b, OperatorType x) {
update(a, b, x, 0, n, 0);
}
// range query for [a, b)
MonoidType query(int a, int b) {
return query(a, b, 0, n, 0);
}
void dump() {
fprintf(stderr, "[lazy]\n");
for(int i=0; i<2*n-1; i++) {
if(i == n-1) fprintf(stderr, "xxx ");
if(lazy[i] == E1) fprintf(stderr, " E ");
else fprintf(stderr, "%3d ", lazy[i]);
}
fprintf(stderr, "\n");
fprintf(stderr, "[node]\n");
for(int i=0; i<2*n-1; i++) {
if(i == n-1) fprintf(stderr, "xxx ");
if(node[i] == E0) fprintf(stderr, " E ");
else fprintf(stderr, "%3d ", node[i]);
}
fprintf(stderr, "\n");
}
};