This documentation is automatically generated by online-judge-tools/verification-helper
This project is maintained by tsutaj
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_D"
#include <cstdio>
#include <vector>
#include <functional>
using namespace std;
using ll = long long int;
#define call_from_test
#include "../../../graph/graph_020_HLDecomposition.cpp"
#include "../../../structure/strc_009_abst_lazy_segtree.cpp"
#undef call_from_test
int main() {
int N; scanf("%d", &N);
HLD hld(N);
for(int i=0; i<N; i++) {
int K; scanf("%d", &K);
for(int j=0; j<K; j++) {
int v; scanf("%d", &v);
hld.add_edge(i, v);
}
}
hld.build();
LazySegmentTree<ll, ll> seg(N, 0, 0,
[](ll a, ll b) { return a + b; },
[](ll a, ll b) { return a + b; },
[](ll a, ll b) { return a + b; },
[](ll a, int x) { return a * x; });
int Q; scanf("%d", &Q);
while(Q--) {
int t; scanf("%d", &t);
if(t == 0) {
int v, w; scanf("%d%d", &v, &w);
int u = hld.par[v];
hld.apply_edges(u, v, [&](int l, int r) {
seg.update(l, r, w);
});
}
if(t == 1) {
int u; scanf("%d", &u);
auto f = [&](int l, int r) {
return seg.query(l, r);
};
auto m = [&](ll v0, ll v1) {
return v0 + v1;
};
ll ans = hld.query_edges(0, u, 0, f, m);
printf("%lld\n", ans);
}
}
return 0;
}
#line 1 "verifying_test/AOJ/GRL_5_D/hld.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_D"
#include <cstdio>
#include <vector>
#include <functional>
using namespace std;
using ll = long long int;
#define call_from_test
#line 1 "graph/graph_020_HLDecomposition.cpp"
// HL 分解 (Heavy-Light Decomposition)
// 頂点 v を根とする部分木: [ in[v], out[v] )
// 頂点 v から見た heavy edge chain の頭: head[v]
struct HLD {
vector< vector<int> > G;
vector<int> sub, par, depth, in, out, rev, head;
void dfs_sub(int cur) {
for(auto& to : G[cur]) {
if(par[cur] == to) continue;
par[to] = cur;
depth[to] = depth[cur] + 1;
dfs_sub(to);
sub[cur] += sub[to];
if(sub[to] > sub[ G[cur][0] ]) swap(to, G[cur][0]);
}
}
void dfs_hld(int cur, int& ptr) {
in[cur] = ptr; rev[ptr++] = cur;
for(auto to : G[cur]) {
if(par[cur] == to) continue;
head[to] = (to == G[cur][0] ? head[cur] : to);
dfs_hld(to, ptr);
}
out[cur] = ptr;
}
HLD(int N) : G(N), sub(N, 1), par(N, -1), depth(N),
in(N), out(N), rev(N), head(N) {}
void add_edge(int u, int v) {
G[u].emplace_back(v);
G[v].emplace_back(u);
}
void build(int root=0) {
int ptr = 0; dfs_sub(root); dfs_hld(root, ptr);
}
int lca(int u, int v) {
while(1) {
if(in[u] > in[v]) swap(u, v);
if(head[u] == head[v]) return u;
v = par[ head[v] ];
}
}
int distance(int u, int v) {
return depth[u] + depth[v] - 2 * depth[lca(u, v)];
}
template <typename F>
void proceed(int u, int v, const F& f, bool b) {
for(; head[u] != head[v]; v = par[ head[v] ]) {
if(in[u] > in[v]) swap(u, v);
f(in[ head[v] ], in[v] + 1);
}
if(in[u] > in[v]) swap(u, v);
f(in[u] + b, in[v] + 1);
}
// u - v パス上に存在する「頂点」or「辺」全体に f(l, r) を作用
// l, r は SegmentTree とかのデータ構造上のインデックス
template <typename F>
void apply_vertices(int u, int v, const F& f) {
proceed(u, v, f, false);
}
template <typename F>
void apply_edges(int u, int v, const F& f) {
proceed(u, v, f, true);
}
template <typename T, typename F, typename M>
T proceed(int u, int v, T E, const F& f, const M& m, bool b) {
T vl(E), vr(E);
for(; head[u] != head[v]; v = par[ head[v] ]) {
if(in[u] > in[v]) swap(u, v), swap(vl, vr);
vr = m(f(in[ head[v] ], in[v] + 1), vr);
}
if(in[u] > in[v]) swap(u, v), swap(vl, vr);
vr = m(f(in[u] + b, in[v] + 1), vr);
return m(vl, vr);
}
// u - v パス上に存在する「頂点」or「辺」全体に割り当てられた値を
// 各 chunk に対して f(l, r) で得て、それらを m(vl, vr) で merge したものを得る
// 単位元 E も渡そう
template <typename T, typename F, typename M>
T query_vertices(int u, int v, T E, const F& f, const M& m) {
return proceed(u, v, E, f, m, false);
}
template <typename T, typename F, typename M>
T query_edges(int u, int v, T E, const F& f, const M& m) {
return proceed(u, v, E, f, m, true);
}
};
#line 1 "structure/strc_009_abst_lazy_segtree.cpp"
// @category セグメント木 (Segment Tree)
// @title 遅延伝播セグメント木 (Lazy Segment Tree)
template <typename MonoidType, typename OperatorType>
struct LazySegmentTree {
using MMtoM = function< MonoidType(MonoidType, MonoidType) >;
using OOtoO = function< OperatorType(OperatorType, OperatorType) >;
using MOtoM = function< MonoidType(MonoidType, OperatorType) >;
using OItoO = function< OperatorType(OperatorType, int) >;
// node, lazy, update flag (for lazy), identity element
int n;
vector<MonoidType> node;
vector<OperatorType> lazy;
vector<bool> need_update;
MonoidType E0;
OperatorType E1;
// update / combine / lazy / accumulate function
MOtoM upd_f;
MMtoM cmb_f;
OOtoO lzy_f;
OItoO acc_f;
void build(int m, vector<MonoidType> v = vector<MonoidType>()) {
if(v != vector<MonoidType>()) m = v.size();
n = 1; while(n < m) n *= 2;
node = vector<MonoidType>(2*n-1, E0);
lazy = vector<OperatorType>(2*n-1, E1);
need_update = vector<bool>(2*n-1, false);
if(v != vector<MonoidType>()) {
for(int i=0; i<m; i++) {
node[n-1+i] = v[i];
}
for(int i=n-2; i>=0; i--) {
node[i] = cmb_f(node[2*i+1], node[2*i+2]);
}
}
}
// initialize
LazySegmentTree() {}
LazySegmentTree(int n_, MonoidType E0_, OperatorType E1_,
MOtoM upd_f_, MMtoM cmb_f_, OOtoO lzy_f_, OItoO acc_f_,
vector<MonoidType> v = vector<MonoidType>()) :
E0(E0_), E1(E1_),
upd_f(upd_f_), cmb_f(cmb_f_), lzy_f(lzy_f_), acc_f(acc_f_) {
build(n_, v);
}
void eval(int k, int l, int r) {
if(!need_update[k]) return;
node[k] = upd_f(node[k], acc_f(lazy[k], r - l));
if(r - l > 1) {
lazy[2*k+1] = lzy_f(lazy[2*k+1], lazy[k]);
lazy[2*k+2] = lzy_f(lazy[2*k+2], lazy[k]);
need_update[2*k+1] = need_update[2*k+2] = true;
}
lazy[k] = E1;
need_update[k] = false;
}
void update(int a, int b, OperatorType x, int l, int r, int k) {
eval(k, l, r);
if(b <= l or r <= a) return;
if(a <= l and r <= b) {
lazy[k] = lzy_f(lazy[k], x);
need_update[k] = true;
eval(k, l, r);
}
else {
int mid = (l + r) / 2;
update(a, b, x, l, mid, 2*k+1);
update(a, b, x, mid, r, 2*k+2);
node[k] = cmb_f(node[2*k+1], node[2*k+2]);
}
}
MonoidType query(int a, int b, int l, int r, int k) {
if(b <= l or r <= a) return E0;
eval(k, l, r);
if(a <= l and r <= b) return node[k];
int mid = (l + r) / 2;
MonoidType vl = query(a, b, l, mid, 2*k+1);
MonoidType vr = query(a, b, mid, r, 2*k+2);
return cmb_f(vl, vr);
}
// update [a, b)-th element (applied value, x)
void update(int a, int b, OperatorType x) {
update(a, b, x, 0, n, 0);
}
// range query for [a, b)
MonoidType query(int a, int b) {
return query(a, b, 0, n, 0);
}
void dump() {
fprintf(stderr, "[lazy]\n");
for(int i=0; i<2*n-1; i++) {
if(i == n-1) fprintf(stderr, "xxx ");
if(lazy[i] == E1) fprintf(stderr, " E ");
else fprintf(stderr, "%3d ", lazy[i]);
}
fprintf(stderr, "\n");
fprintf(stderr, "[node]\n");
for(int i=0; i<2*n-1; i++) {
if(i == n-1) fprintf(stderr, "xxx ");
if(node[i] == E0) fprintf(stderr, " E ");
else fprintf(stderr, "%3d ", node[i]);
}
fprintf(stderr, "\n");
}
};
#line 11 "verifying_test/AOJ/GRL_5_D/hld.test.cpp"
#undef call_from_test
int main() {
int N; scanf("%d", &N);
HLD hld(N);
for(int i=0; i<N; i++) {
int K; scanf("%d", &K);
for(int j=0; j<K; j++) {
int v; scanf("%d", &v);
hld.add_edge(i, v);
}
}
hld.build();
LazySegmentTree<ll, ll> seg(N, 0, 0,
[](ll a, ll b) { return a + b; },
[](ll a, ll b) { return a + b; },
[](ll a, ll b) { return a + b; },
[](ll a, int x) { return a * x; });
int Q; scanf("%d", &Q);
while(Q--) {
int t; scanf("%d", &t);
if(t == 0) {
int v, w; scanf("%d%d", &v, &w);
int u = hld.par[v];
hld.apply_edges(u, v, [&](int l, int r) {
seg.update(l, r, w);
});
}
if(t == 1) {
int u; scanf("%d", &u);
auto f = [&](int l, int r) {
return seg.query(l, r);
};
auto m = [&](ll v0, ll v1) {
return v0 + v1;
};
ll ans = hld.query_edges(0, u, 0, f, m);
printf("%lld\n", ans);
}
}
return 0;
}